If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2-29x+6=0
a = 35; b = -29; c = +6;
Δ = b2-4ac
Δ = -292-4·35·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-1}{2*35}=\frac{28}{70} =2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+1}{2*35}=\frac{30}{70} =3/7 $
| 43+10p=58 | | 1/7q=5 | | 4/7x-4=1/7(x-14) | | 2(3-y)+5y=12 | | -1/3x2+7=-5 | | -11=9+3p/4 | | 6(n-8)=7(n=8) | | F(n)=-2n+10 | | 7v-3=6(v+2) | | x^2−12x+36=0 | | 9t+1=9t-1 | | 2/5x-3/10x=1/2+3 | | 2a+4=5a-11 | | (2x-10/3)=((2x/3)-(10/3)) | | 3(g-11)=7 | | 26=7w-5/3+6w-3/5 | | 2/3n=1/3 | | (4x-30)+(2x+25)+(X+50)+(X+40)=(2X-5) | | 9a^2+3a=6a^2-4a | | -1=r-(-4) | | 16/2x=10 | | -1/2(t+4)=-5-t | | 33=13+b | | 19=n/12 | | -1/2x^2=-6x+20 | | z/3+3=30 | | 3x–10=3(x–4)+2 | | 8(a-5)(a^2+5a+25)=0 | | 2x+0.89=18 | | -1/2+2/7u=-2/3 | | 15(10-d)+22d=199 | | 1.82=x+.12 |